Copied to
clipboard

G = C42×C3⋊S3order 288 = 25·32

Direct product of C42 and C3⋊S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C42×C3⋊S3, C12215C2, C62.215C23, C1210(C4×S3), (C4×C12)⋊10S3, C32(S3×C42), C326(C2×C42), (C2×C12).423D6, (C6×C12).354C22, C6.62(S3×C2×C4), (C3×C12)⋊20(C2×C4), C3⋊Dic318(C2×C4), (C4×C3⋊Dic3)⋊28C2, (C3×C6).93(C22×C4), C22.9(C22×C3⋊S3), (C2×C6).232(C22×S3), (C22×C3⋊S3).111C22, (C2×C3⋊Dic3).184C22, C2.1(C2×C4×C3⋊S3), (C2×C4×C3⋊S3).31C2, (C2×C4).96(C2×C3⋊S3), (C2×C3⋊S3).50(C2×C4), SmallGroup(288,728)

Series: Derived Chief Lower central Upper central

C1C32 — C42×C3⋊S3
C1C3C32C3×C6C62C22×C3⋊S3C2×C4×C3⋊S3 — C42×C3⋊S3
C32 — C42×C3⋊S3
C1C42

Generators and relations for C42×C3⋊S3
 G = < a,b,c,d,e | a4=b4=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 948 in 324 conjugacy classes, 129 normal (8 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C42, C42, C22×C4, C3⋊S3, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×C42, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, C4×Dic3, C4×C12, S3×C2×C4, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, S3×C42, C4×C3⋊Dic3, C122, C2×C4×C3⋊S3, C42×C3⋊S3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C42, C22×C4, C3⋊S3, C4×S3, C22×S3, C2×C42, C2×C3⋊S3, S3×C2×C4, C4×C3⋊S3, C22×C3⋊S3, S3×C42, C2×C4×C3⋊S3, C42×C3⋊S3

Smallest permutation representation of C42×C3⋊S3
On 144 points
Generators in S144
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 76 126 26)(2 73 127 27)(3 74 128 28)(4 75 125 25)(5 80 83 132)(6 77 84 129)(7 78 81 130)(8 79 82 131)(9 58 107 18)(10 59 108 19)(11 60 105 20)(12 57 106 17)(13 71 123 100)(14 72 124 97)(15 69 121 98)(16 70 122 99)(21 61 113 109)(22 62 114 110)(23 63 115 111)(24 64 116 112)(29 139 42 38)(30 140 43 39)(31 137 44 40)(32 138 41 37)(33 85 143 54)(34 86 144 55)(35 87 141 56)(36 88 142 53)(45 96 67 119)(46 93 68 120)(47 94 65 117)(48 95 66 118)(49 103 91 136)(50 104 92 133)(51 101 89 134)(52 102 90 135)
(1 114 15)(2 115 16)(3 116 13)(4 113 14)(5 139 136)(6 140 133)(7 137 134)(8 138 135)(9 47 141)(10 48 142)(11 45 143)(12 46 144)(17 120 86)(18 117 87)(19 118 88)(20 119 85)(21 124 125)(22 121 126)(23 122 127)(24 123 128)(25 61 97)(26 62 98)(27 63 99)(28 64 100)(29 91 132)(30 92 129)(31 89 130)(32 90 131)(33 105 67)(34 106 68)(35 107 65)(36 108 66)(37 102 82)(38 103 83)(39 104 84)(40 101 81)(41 52 79)(42 49 80)(43 50 77)(44 51 78)(53 59 95)(54 60 96)(55 57 93)(56 58 94)(69 76 110)(70 73 111)(71 74 112)(72 75 109)
(1 117 51)(2 118 52)(3 119 49)(4 120 50)(5 64 33)(6 61 34)(7 62 35)(8 63 36)(9 40 69)(10 37 70)(11 38 71)(12 39 72)(13 20 42)(14 17 43)(15 18 44)(16 19 41)(21 55 129)(22 56 130)(23 53 131)(24 54 132)(25 68 133)(26 65 134)(27 66 135)(28 67 136)(29 123 60)(30 124 57)(31 121 58)(32 122 59)(45 103 74)(46 104 75)(47 101 76)(48 102 73)(77 113 86)(78 114 87)(79 115 88)(80 116 85)(81 110 141)(82 111 142)(83 112 143)(84 109 144)(89 126 94)(90 127 95)(91 128 96)(92 125 93)(97 106 140)(98 107 137)(99 108 138)(100 105 139)
(1 126)(2 127)(3 128)(4 125)(5 11)(6 12)(7 9)(8 10)(13 24)(14 21)(15 22)(16 23)(17 129)(18 130)(19 131)(20 132)(25 75)(26 76)(27 73)(28 74)(29 85)(30 86)(31 87)(32 88)(33 38)(34 39)(35 40)(36 37)(41 53)(42 54)(43 55)(44 56)(45 136)(46 133)(47 134)(48 135)(49 96)(50 93)(51 94)(52 95)(57 77)(58 78)(59 79)(60 80)(61 72)(62 69)(63 70)(64 71)(65 101)(66 102)(67 103)(68 104)(81 107)(82 108)(83 105)(84 106)(89 117)(90 118)(91 119)(92 120)(97 109)(98 110)(99 111)(100 112)(113 124)(114 121)(115 122)(116 123)(137 141)(138 142)(139 143)(140 144)

G:=sub<Sym(144)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,76,126,26)(2,73,127,27)(3,74,128,28)(4,75,125,25)(5,80,83,132)(6,77,84,129)(7,78,81,130)(8,79,82,131)(9,58,107,18)(10,59,108,19)(11,60,105,20)(12,57,106,17)(13,71,123,100)(14,72,124,97)(15,69,121,98)(16,70,122,99)(21,61,113,109)(22,62,114,110)(23,63,115,111)(24,64,116,112)(29,139,42,38)(30,140,43,39)(31,137,44,40)(32,138,41,37)(33,85,143,54)(34,86,144,55)(35,87,141,56)(36,88,142,53)(45,96,67,119)(46,93,68,120)(47,94,65,117)(48,95,66,118)(49,103,91,136)(50,104,92,133)(51,101,89,134)(52,102,90,135), (1,114,15)(2,115,16)(3,116,13)(4,113,14)(5,139,136)(6,140,133)(7,137,134)(8,138,135)(9,47,141)(10,48,142)(11,45,143)(12,46,144)(17,120,86)(18,117,87)(19,118,88)(20,119,85)(21,124,125)(22,121,126)(23,122,127)(24,123,128)(25,61,97)(26,62,98)(27,63,99)(28,64,100)(29,91,132)(30,92,129)(31,89,130)(32,90,131)(33,105,67)(34,106,68)(35,107,65)(36,108,66)(37,102,82)(38,103,83)(39,104,84)(40,101,81)(41,52,79)(42,49,80)(43,50,77)(44,51,78)(53,59,95)(54,60,96)(55,57,93)(56,58,94)(69,76,110)(70,73,111)(71,74,112)(72,75,109), (1,117,51)(2,118,52)(3,119,49)(4,120,50)(5,64,33)(6,61,34)(7,62,35)(8,63,36)(9,40,69)(10,37,70)(11,38,71)(12,39,72)(13,20,42)(14,17,43)(15,18,44)(16,19,41)(21,55,129)(22,56,130)(23,53,131)(24,54,132)(25,68,133)(26,65,134)(27,66,135)(28,67,136)(29,123,60)(30,124,57)(31,121,58)(32,122,59)(45,103,74)(46,104,75)(47,101,76)(48,102,73)(77,113,86)(78,114,87)(79,115,88)(80,116,85)(81,110,141)(82,111,142)(83,112,143)(84,109,144)(89,126,94)(90,127,95)(91,128,96)(92,125,93)(97,106,140)(98,107,137)(99,108,138)(100,105,139), (1,126)(2,127)(3,128)(4,125)(5,11)(6,12)(7,9)(8,10)(13,24)(14,21)(15,22)(16,23)(17,129)(18,130)(19,131)(20,132)(25,75)(26,76)(27,73)(28,74)(29,85)(30,86)(31,87)(32,88)(33,38)(34,39)(35,40)(36,37)(41,53)(42,54)(43,55)(44,56)(45,136)(46,133)(47,134)(48,135)(49,96)(50,93)(51,94)(52,95)(57,77)(58,78)(59,79)(60,80)(61,72)(62,69)(63,70)(64,71)(65,101)(66,102)(67,103)(68,104)(81,107)(82,108)(83,105)(84,106)(89,117)(90,118)(91,119)(92,120)(97,109)(98,110)(99,111)(100,112)(113,124)(114,121)(115,122)(116,123)(137,141)(138,142)(139,143)(140,144)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,76,126,26)(2,73,127,27)(3,74,128,28)(4,75,125,25)(5,80,83,132)(6,77,84,129)(7,78,81,130)(8,79,82,131)(9,58,107,18)(10,59,108,19)(11,60,105,20)(12,57,106,17)(13,71,123,100)(14,72,124,97)(15,69,121,98)(16,70,122,99)(21,61,113,109)(22,62,114,110)(23,63,115,111)(24,64,116,112)(29,139,42,38)(30,140,43,39)(31,137,44,40)(32,138,41,37)(33,85,143,54)(34,86,144,55)(35,87,141,56)(36,88,142,53)(45,96,67,119)(46,93,68,120)(47,94,65,117)(48,95,66,118)(49,103,91,136)(50,104,92,133)(51,101,89,134)(52,102,90,135), (1,114,15)(2,115,16)(3,116,13)(4,113,14)(5,139,136)(6,140,133)(7,137,134)(8,138,135)(9,47,141)(10,48,142)(11,45,143)(12,46,144)(17,120,86)(18,117,87)(19,118,88)(20,119,85)(21,124,125)(22,121,126)(23,122,127)(24,123,128)(25,61,97)(26,62,98)(27,63,99)(28,64,100)(29,91,132)(30,92,129)(31,89,130)(32,90,131)(33,105,67)(34,106,68)(35,107,65)(36,108,66)(37,102,82)(38,103,83)(39,104,84)(40,101,81)(41,52,79)(42,49,80)(43,50,77)(44,51,78)(53,59,95)(54,60,96)(55,57,93)(56,58,94)(69,76,110)(70,73,111)(71,74,112)(72,75,109), (1,117,51)(2,118,52)(3,119,49)(4,120,50)(5,64,33)(6,61,34)(7,62,35)(8,63,36)(9,40,69)(10,37,70)(11,38,71)(12,39,72)(13,20,42)(14,17,43)(15,18,44)(16,19,41)(21,55,129)(22,56,130)(23,53,131)(24,54,132)(25,68,133)(26,65,134)(27,66,135)(28,67,136)(29,123,60)(30,124,57)(31,121,58)(32,122,59)(45,103,74)(46,104,75)(47,101,76)(48,102,73)(77,113,86)(78,114,87)(79,115,88)(80,116,85)(81,110,141)(82,111,142)(83,112,143)(84,109,144)(89,126,94)(90,127,95)(91,128,96)(92,125,93)(97,106,140)(98,107,137)(99,108,138)(100,105,139), (1,126)(2,127)(3,128)(4,125)(5,11)(6,12)(7,9)(8,10)(13,24)(14,21)(15,22)(16,23)(17,129)(18,130)(19,131)(20,132)(25,75)(26,76)(27,73)(28,74)(29,85)(30,86)(31,87)(32,88)(33,38)(34,39)(35,40)(36,37)(41,53)(42,54)(43,55)(44,56)(45,136)(46,133)(47,134)(48,135)(49,96)(50,93)(51,94)(52,95)(57,77)(58,78)(59,79)(60,80)(61,72)(62,69)(63,70)(64,71)(65,101)(66,102)(67,103)(68,104)(81,107)(82,108)(83,105)(84,106)(89,117)(90,118)(91,119)(92,120)(97,109)(98,110)(99,111)(100,112)(113,124)(114,121)(115,122)(116,123)(137,141)(138,142)(139,143)(140,144) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,76,126,26),(2,73,127,27),(3,74,128,28),(4,75,125,25),(5,80,83,132),(6,77,84,129),(7,78,81,130),(8,79,82,131),(9,58,107,18),(10,59,108,19),(11,60,105,20),(12,57,106,17),(13,71,123,100),(14,72,124,97),(15,69,121,98),(16,70,122,99),(21,61,113,109),(22,62,114,110),(23,63,115,111),(24,64,116,112),(29,139,42,38),(30,140,43,39),(31,137,44,40),(32,138,41,37),(33,85,143,54),(34,86,144,55),(35,87,141,56),(36,88,142,53),(45,96,67,119),(46,93,68,120),(47,94,65,117),(48,95,66,118),(49,103,91,136),(50,104,92,133),(51,101,89,134),(52,102,90,135)], [(1,114,15),(2,115,16),(3,116,13),(4,113,14),(5,139,136),(6,140,133),(7,137,134),(8,138,135),(9,47,141),(10,48,142),(11,45,143),(12,46,144),(17,120,86),(18,117,87),(19,118,88),(20,119,85),(21,124,125),(22,121,126),(23,122,127),(24,123,128),(25,61,97),(26,62,98),(27,63,99),(28,64,100),(29,91,132),(30,92,129),(31,89,130),(32,90,131),(33,105,67),(34,106,68),(35,107,65),(36,108,66),(37,102,82),(38,103,83),(39,104,84),(40,101,81),(41,52,79),(42,49,80),(43,50,77),(44,51,78),(53,59,95),(54,60,96),(55,57,93),(56,58,94),(69,76,110),(70,73,111),(71,74,112),(72,75,109)], [(1,117,51),(2,118,52),(3,119,49),(4,120,50),(5,64,33),(6,61,34),(7,62,35),(8,63,36),(9,40,69),(10,37,70),(11,38,71),(12,39,72),(13,20,42),(14,17,43),(15,18,44),(16,19,41),(21,55,129),(22,56,130),(23,53,131),(24,54,132),(25,68,133),(26,65,134),(27,66,135),(28,67,136),(29,123,60),(30,124,57),(31,121,58),(32,122,59),(45,103,74),(46,104,75),(47,101,76),(48,102,73),(77,113,86),(78,114,87),(79,115,88),(80,116,85),(81,110,141),(82,111,142),(83,112,143),(84,109,144),(89,126,94),(90,127,95),(91,128,96),(92,125,93),(97,106,140),(98,107,137),(99,108,138),(100,105,139)], [(1,126),(2,127),(3,128),(4,125),(5,11),(6,12),(7,9),(8,10),(13,24),(14,21),(15,22),(16,23),(17,129),(18,130),(19,131),(20,132),(25,75),(26,76),(27,73),(28,74),(29,85),(30,86),(31,87),(32,88),(33,38),(34,39),(35,40),(36,37),(41,53),(42,54),(43,55),(44,56),(45,136),(46,133),(47,134),(48,135),(49,96),(50,93),(51,94),(52,95),(57,77),(58,78),(59,79),(60,80),(61,72),(62,69),(63,70),(64,71),(65,101),(66,102),(67,103),(68,104),(81,107),(82,108),(83,105),(84,106),(89,117),(90,118),(91,119),(92,120),(97,109),(98,110),(99,111),(100,112),(113,124),(114,121),(115,122),(116,123),(137,141),(138,142),(139,143),(140,144)]])

96 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A···4L4M···4X6A···6L12A···12AV
order1222222233334···44···46···612···12
size1111999922221···19···92···22···2

96 irreducible representations

dim11111222
type++++++
imageC1C2C2C2C4S3D6C4×S3
kernelC42×C3⋊S3C4×C3⋊Dic3C122C2×C4×C3⋊S3C4×C3⋊S3C4×C12C2×C12C12
# reps13132441248

Matrix representation of C42×C3⋊S3 in GL6(𝔽13)

1200000
080000
001000
000100
000010
000001
,
500000
0120000
0012000
0001200
000010
000001
,
100000
010000
000100
00121200
000001
00001212
,
100000
010000
00121200
001000
000010
000001
,
100000
0120000
001000
00121200
000011
0000012

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,1,12] >;

C42×C3⋊S3 in GAP, Magma, Sage, TeX

C_4^2\times C_3\rtimes S_3
% in TeX

G:=Group("C4^2xC3:S3");
// GroupNames label

G:=SmallGroup(288,728);
// by ID

G=gap.SmallGroup(288,728);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,58,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽